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ABSTRACT 
Researchers of HIV-1 are today, still unable to determine exactly the 
biological mechanisms that cause AIDS.  Various mechanisms have 
been hypothesized and their existences have been experimentally 
verified, but whether they are sufficient to account for the observed 
disease progression is still in question.  To better understand the 
phenomena, HIV-1 researchers turn to scientific models for 
hypothesis verification.  Modeling methods which rely on 
differential calculus to describe population dynamics, can be 
inconvenient for predicting nonuniform interactions on a spatial 
dimension.  Multi-Agent (or MA) modeling approaches, on the 
other hand, views the immune system as a hierarchical structure of 
cooperating and competing agents, operating with highly coupled 
behaviours to exhibit emergent complexity.  We adopt the latter 
approach to simulate the pathogenesis of HIV-1.  We show the 
model design and the emergent results for four well-known 
hypotheses: Direct Effect on CD4+ cells, Rapid Viral Mutation, 
Syncytium Formation, and Filling of CD4+ Receptor sites under the 
influence of a null model for an adaptive response to HIV-1.  We 
give the logical basis for our methodology and clarify the semantics 
for ‘model accuracy’. Preliminary simulation results indicate that 
AIDS is more likely to be caused by either Rapid Viral Mutation or 
Syncytium Formation. 

Categories and Subject Descriptors 
I.6.0 [Simulation and Modeling]: General; J.3 [Life and Medical 
Sciences] - biology and genetics. 

General Terms 
Design, Experimentation, Theory, Verification. 

Keywords 
HIV-1, AIDS, immune systems modeling, multi-agent simulation, 
hypothesis verification. 

1. INTRODUCTION 
It is a widely accepted fact that HIV-1 causes AIDS, a 

condition in which the normal human immune system becomes 

suppressed, rendering the affected individual unable to fight serious 
or fatal infections.  Infection by HIV-1 has many unusual 
quantitative features.  An example is the average 10-year lag from 
the start of infection till HIV-1 totally dominates the immune 
system.  However, despite years of effort in clinical and laboratory 
experiments, researchers of HIV-1 are still unable to agree on the 
explicit causes that result in AIDS [10].  Various mechanisms have 
been hypothesized and their existences have been experimentally 
verified, but whether they are sufficient to account for the observed 
disease progression is unknown. In order to understand the 
phenomena better, HIV-1 researchers turn to the construction of 
scientific models to verify these hypotheses. 

One of the earlier approaches of HIV-1 modeling uses ordinary 
differential equation (or ODE) models [19].  For low levels of 
granularity, they can be inexpensive to construct and allow the 
prediction of macroscopic dynamics in time dimension.  However, 
to increase model granularity to cover spatial and topological 
dimension that may contain crucial information with regards to 
realistic disease progression [26], partial differential equations 
(PDEs) are usually required.  These inadequacies of traditional 
models to prescriptively elucidate the workings of complex 
interdependent systems have prompted research in multi-agent 
based complex adaptive models [7]. The latter approaches 
conveniently enable the modeling of different entity types through 
the specification of interaction rules between agents and their 
environment.  By modeling the immune system at cell and molecule 
level, we analyze in detail each of the four hypotheses [10][25]; 
namely, Direct Effect on CD4+ cells, Rapid Viral Mutation, 
Syncytium Formation and Filling of CD4+ Receptor Sites, under the 
influence of a null model for an adaptive response to HIV-1.  
Through these experiments, we aim to establish the probable 
sufficiency of these hypotheses towards the causation of AIDS, 
individually or in combination. 

This paper is organized as follows.  Section 2 briefly 
introduces the human immune system, HIV-1 pathogenesis and the 
four hypotheses that have been proposed in literature. In Section 3, 
we review a basic mathematical model of HIV pathogenesis and 
discuss necessary assumptions for its mathematical tractability.  
Section 4 describes the design of a CAFISS [9] -based null model 
for an adaptive immune system and the specific changes for 
modeling the four abovementioned hypotheses; their MA simulation 
results are presented in Section 5.  Section 6 presents the logical 
basis for our methodology and clarifies the semantics of ‘model 
accuracy’ as specific types of improvements.  Section 7 concludes 
and summarizes our results for future directions. 
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2. IMMUNE SYSTEM AND HIV-1 
2.1 Immune System Basics 

The human immune system can mount a highly specific 
response against virtually any foreign substance, even those never 
seen before in the course of evolution.  It is able to do so primarily 
because of cells known as lymphocytes [25]. Lymphocytes are 
divided into two main classes: B cells that are produced and mature 
from the bone marrow and T cells that are produced from the bone 
marrow but travel to and mature in the thymus glands.  Cytotoxic or 
killer T lymphocytes (or CTL) and helper T cells (or TH) are two 
important kinds of T cells.  Each individual lymphocyte is specific 
to a particular antigen.  This specificity results from the fact that 
each lymphocyte possesses various probes on its surface, known as 
receptors, all of which are specific to a particular antigen.  Cells 
maintain contact with each other through surface contact and 
molecule secretion.  When a T cell encounters a target cell, its 
receptors examine the fragments on the target cell surface.  The T 
cell does not directly recognize a soluble antigen, but the antigen 
displayed on the surface of an antigen-presenting cell (or APC), e.g., 
a B cell or a dendritic cell.  From the fragments the T cell is able to 
determine whether the cell is self or non-self. The following is a 
brief introduction to the functions of some important types of 
immune cells from a biological perspective [8] but at a level of 
granularity particular to the models we have constructed in CAFISS. 

Helper T Cells (TH). TH cells have receptors on their surface 
for recognition of antigens.  The TH cell is activated when their 
receptors bind to the antigen presented on an APC.  It secretes a 
variety of stimulatory molecules to activate other immune system 
cells, for example B cells. TH cells are also known as CD4+ cells or 
T4 cells, as they have CD4 molecules on its surface.  Cytotoxic T 
Lymphocytes (CTL). CTL cells can kill infected cells upon 
activation and recognition of antigens on infected cells’ surface.  B 
Cells (B). B cells have receptors for free antigens.  Upon activation 
by TH cells, they produce a large amount of specific antibodies, 
which are the soluble forms of the B cell receptors. Antibodies 
(AB). Antibodies are molecules secreted by B cells.  The antibodies 
are specific to a particular type of antigen (which they are able to 
match).  They bind to the matched free antigens, neutralize the 
antigen and serve a marker for macrophages (which then perform 
phagocytosis). 

 

2.2 HIV-1 Pathogenesis: Observations and 
Hypotheses 

Acquired Immune Deficiency Syndrome (or AIDS) is 
characterized by a combination of opportunistic infections and a 
markedly reduced circulating helper TH cell count [21].  That the 
Human Immunodeficiency Virus (or HIV) is the cause of AIDS has 
been widely accepted.  There are two types of HIV: HIV-1 and 
HIV-2.  Both replicate in TH cells and are regarded as pathogenic in 
infected persons although the actual immune deficiency may be less 
severe in HIV-2 infected individuals [22].  In this paper, we shall 
refer to HIV-1 as simply HIV.  The progression of HIV infection 
towards AIDS typically follows three phases [15][19], as shown in 
Figure 1.   They are briefly: 

 
1. Acute Phase: Within several weeks after infection, there is an 

early phase with acute symptoms, extensive viremia, and large 
number of infected helper T cells in blood.  With the onset of 

HIV-specific antibodies and cytotoxic T cells, the amount of 
virus sharply declines by a factor of 100 or more. 

2. Chronic (Asymptomatic) Phase: The viral load remains at a 
relatively low but constant level, while helper T cell count 
slowly decreases.  This period has been known to last for up to 
12 years. 

3. Final stage – AIDS: A normal helper T cell count is 600/µl – 
1400/µl.  When this concentration falls below 200/µl, it is 
characterized as AIDS [20].  At this stage the viral load rises 
exponentially and the immune system collapses, resulting in 
immunodeficiency and inevitable death. 
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Figure 1. Progression of HIV towards AIDS [15] 

Various mechanisms have been hypothesized to explain the 
HIV infection dynamics. We concentrate on four of them; namely, 
Direct Effect on CD4+ cell [14], Rapid Viral Mutation [15],  
Syncytium Formation [23] and Filling of CD4+ Receptor sites [25].  
These hypotheses are chosen because of the extensive research and 
wide acceptance by HIV-1 researchers. 

Direct Effect on CD4+ Cell: In the period 1983-1984, 
Montagnier and Gallo advocated that HIV had a direct cytopathic 
effect on CD4+ cells [14].  They believed then that HIV could infect 
and destroy the TH cell, which in turn causes the immune system to 
lose its immune function when the TH cell population level becomes 
too low.  

Rapid Viral Mutation: The immune cells are able to attack 
the virus only upon recognition [15].  As HIV replication is error 
prone during reverse transcription which results in mutant strains, 
the immune system is put at disadvantage since it needs to detect 
each mutant strain before it is able to activate the specific antibodies.  
It is postulated that mutation reduces the chance of virus detection 
and hence allows HIV to persist. 

Syncytium Formation: The formation of syncytium involves 
the fusion of the cell membrane of an infected TH cell with an 
uninfected TH cell [23].  Mature HIV envelope glycoprotein  
(gp120/gp41) expressed at the surface of infected cells drives cell-
to-cell fusion with adjacent uninfected TH cells [5], which results in 
formation of multinucleated syncytia.  After several rounds of 
fusion, syncytium attains volumes equivalent to several dozens or 
hundreds of individual cells.  Cell apoptosis (i.e., cell is 
programmed to death) is then triggered, which contributes to the 
global loss of T cells.   

Filling CD4+ Receptor Sites: HIV can attack CD4+ receptors 
in at least two ways [25].  First, HIV can attach, via its gp160 
“spikes” to CD4+ receptor sites.  Second, HIV is capable of 
releasing or freeing its exterior gp120 envelope glycoprotein, 
thereby generating a molecule that can actively bind to CD4-bearing 
cells.  TH cell loses its immune function as a result of receptor site 
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filling; hence the TH cells do not have to be infected with HIV to 
lose their immune function. 

There exist experimental evidences that support the existence 
of the above hypothesized mechanisms, but the sufficiency of these 
hypotheses needs to be further studied, that is, whether the 
hypothesis alone, or a combination of them, is sufficient to cause the 
clinical observation as shown in Figure 1 (we will examine the 
validity of this proposed argument in Section 6).  For example, 
Gallo later admitted that the Direct Effect on CD4+ Cell hypothesis 
might be too simplistic [10][11] in that very few TH cells (in the 
order of 1% [2]) are actually infected versus a TH cell recovery rate 
of 5% every two days, indicating that the hypothesis could be 
insufficient. This reasoning process exemplifies how hypothesis 
sufficiency could be verified through simple quantitative 
comparisons. With an explicitly constructed computational model, 
we can further quantitatively study many types of entities and 
interactions simultaneously, which would be too complex for simple 
rationalization.  Therefore modeling has great value in assisting in 
the verification of infection hypotheses.  We next review 
mathematical model construction strategies.    

 

3. REVIEW OF DYNAMICAL MODELS 
ODE models have been widely used by researchers to describe 

immunological dynamics.  An extensive survey [26] details the 
common steps used by researchers to construct ODE models, in 
summary they are: 
 
1. Determine the level of model granularity.  Not all types of cells 

and molecules will be present in the model.  The selection 
reflects the model developers’ understanding on what might be 
important.   

2. Assume causal or correlative relationships.  Identify the 
probable factors that increase or decrease the population sizes 
of the selected entities.  For example, natural cell death and 
accelerated cell death due to infection are two different factors 
contributing to the decrease of population size. 

3. Formulate ODEs.  Each equation describes the change of 
entity population size with respect to time, which is usually a 
linear combination of the factors identified in Step 2.  Since the 
factors are usually dependent on the population sizes of other 
entities, the final set of ODEs become tightly coupled. 

4. Model Analysis and Prediction.  Traditional ODE analysis 
techniques are applied, for example, the derivation of steady 
states and associated stability conditions.  The analysis is 
accompanied with interpretations in the immunological 
context, based on which predictions will be made. 
 
We exemplify this process (particularly Step 4) using a basic 

ODE model of HIV infection by Perelson [20], given in Eq. 1 to Eq. 
3.  This model involves three entity populations: healthy T cells 
( T ), infected T cells ( I ) and HIV virions (V ); each described by 
one differential equation.  Healthy T cells are produced at a constant 
source rate of λ  and perish at constant rate d  per cell.  These cells 
are susceptible to HIV infection at a rate of k  per virion-cell 
encounter.  The above factors constitute the right-hand side of Eq. 1.  
The infection increases the number of infected T cells, which perish 
at a rate of δ  per cell, as shown in Eq. 2.  New virions are produced 
from infected T cells at rate p  per cell, and existing free virions are 
cleared at a rate of c  per virion, as shown in Eq. 3.  In terms of HIV 

pathogenesis hypothesis this model assumes only the Direct 
Infection Effect on CD4+ cell. 

 kVTdT
t
T −−= λ

d
d  Eq. 1 

 IkVT
t
I δ−=

d
d  Eq. 2 

 cVpI
t
V −=

d
d  Eq. 3 

where: 
T : Healthy T cell population size 
I : Infected T cell population size 
V : HIV virion population size 
λ : T cell production rate  
d : Per cell death rate of healthy T cell 
k : Infection rate (per virion-cell encounter) 
δ : Per cell death rate of infected T cell  
p : Virion production rate (per infected T cell) 
c : Virion clearance rate (per virion) 
   
The analysis of ODE models can be analytical or numerical.  

Analytical techniques involve derivations of steady states, stability 
conditions [3], and threshold expression [16][17].  The parameter 
values are determined by curve-fitting to the clinical data using 
techniques such as nonlinear least-squares estimation [24].  
Numerical analysis often includes simulation, where the transient 
dynamics can be observed.  However, despite having  convenient 
tools and robust languages for model construction and analysis, 
ODE models have several limitations [1][26][27],  mainly due to the 
fact that model entities are treated at population level:  

 
1. Assumption of entity homogeneity.  For example, the basic 

ODE model given above classifies T cells into two states: 
healthy and infected. If we wish to increase the model 
granularity (so as to increase it’s realism), more distinguishable 
states would be needed; such as T cells that are active or 
quiescent, naïve (just produced) or memory (has been activated 
before).  This would mean dividing the cell population into 
more subpopulations, each of which is dedicated to one cell 
state, modeled by a single differential equation.  Solving a 
system of coupled differential equations for as many cell types 
as there are in the human immune system alone, easily 
surpasses the capabilities of any modeling tool and its possible 
computational tractability. As a result, ODE models generally 
assume homogeneity of entity types so as to limit the number 
of computable states while compromising on the ‘realism’ of 
their predictions. 

2. Assumption of spatial and topological independence.  As only 
population level factors are considered, spatial (questions of 
positional effects) and topological (questions of positional 
responses) dependencies on individual interactions are ignored.  
The resulting equations imply that entity interactions are 
uniformly occurring at the same frequency at all places.  We 
believe that this assumption is unjustifiable.  As demonstrated 
in [12], models that explicitly take spatial non-uniformity into 
consideration can lead to drastically different simulation 
results.  

3. Direct design of mathematical expression for macroscopic 
observables.  For example, we can assume infection to be at a 
constant rate, at a time-dependent variable rate, at an entity-
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population-size-dependent variable rate, or a combination of 
these.  In fact, there is no uniquely correct way for such 
formulation (as is often qualified by researchers themselves).  
The key problem that underlies this lack of uniquely correct 
formulation is that macroscopic observables are actually 
emergent properties; they are results from microscopic 
interactions.  A directly designed expression of macroscopic 
observables may approximate observed dynamics well but its 
results are only as good as the assumptions and mathematical 
relationships chosen for the model.  They lack the provision to 
allow serendipitous discoveries through the causality of 
microscopic interactions. 
 
Multi-Agent simulation models (or simply MA models) 

naturally solve the above problems by relaxing the above 
assumptions [13][18].  MA models treat cells and molecules as 
‘agents’ and allow autonomous interactions in a virtual 
environment.  Such a model explores the level of cell-to-cell and 
cell-to-molecule interactions, from which the macroscopic behaviors 
emerge. By doing so we avoid directly making intuition-driven 
assumptions on macroscopic properties.  

 

4. MULTI-AGENT MODEL DESIGN 
As a relatively new approach, MA models differ greatly from 

each other in both design and implementation. Our implementation 
is based on CAFISS [9], which differs from one of the early 
attempts in MA based immune system simulation by Grilo et al. [4] 
in the method of agent activation regime.  In their approach [4], 
Grilo et al. advanced time by a constant interval, during which agent 
interactions were examined and carried out in a predefined 
sequence.  In CAFISS, agents are implemented in a multi-threaded 
fashion; hence the sequence of interaction events is unpredictable.  
Such a design is intended to eliminate possible artifacts resulting 
from the implementation itself.  

To design the CAFISS MA model, we begin by specifying the 
agent interaction rules; some of which are specific to the hypotheses, 
while others are common knowledge specific to the immune system.  
We first specify a null model as a common basis for modeling an 
adaptive immune response for all four HIV hypotheses.  Each 
hypothesis will then imply a specific set of mechanisms added or 
parameter changes on the null model.  

 

4.1 A Null HIV Infection Model 
Figure 2 gives the individual agent ruleset for the null model.  

The rectangular boxes represent individual agents. The incoming 
arrow describes the conditions of the rule.  If the condition is met, 
then the rule is fired, that is, the decision part of the rule is carried 
out, shown as outgoing arrows.  Those outgoing arrows pointing 
back to the agent indicate that the agent state changes as a result of 
rule firing.  For example, an infection event takes place in the 
following order.  The first rule of HIV says that an HIV virion 
continuously sends out an “Infection Signal”, which does not 
require any specific conditions to be met.  The second rule of TH 
says that if a TH cell receives an “Infection Signal”, it changes its 
own state to “infected”, and sends out the “Successful Infection” 
signal.  Upon receiving this signal, the HIV virion is in a situation 
that satisfies the condition of the third rule, so that the virion starts 
to reproduce itself.  Other events, such as TH cell activation, 
antibody secretion, and infected cell killing can be interpreted in a 

similar way.  CAFISS uses a multi-swarm structure for the virtual 
space: a ‘swarm’ represents a spatially localized neighborhood, 
within which the above described signals are sent and received.  As 
such, agent interaction topology is based on spatial proximity: they 
interact only when they are spatially close to each other.   

Antigen matching is implemented as follows. Each HIV virion 
has a specific physical shape, which is computationally represented 
by a binary string. A TH cell or B cell successfully detects the 
antigen only when its receptor (also implemented as a binary string) 
matches the physical shape of the HIV. 
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Figure 2. Agent Rules of our Null HIV Infection Model 

B

AB

HIV

CTLproduce

eliminate

eliminate

infect TH

infectinfect eliminate

activation
 signal

 
Figure 3. Schematic Diagram of the Null Model 

 
Figure 3 is a simplified schematic representation of the null 

model, which contains only the key elements of the agent interaction 
network.  It can be seen that the null model simply captures 
common knowledge about the adaptive immune system, for 
example, TH cell sending activation signals, B cell producing 
antibodies, and humoral elimination of HIV virion; all of which 
have been described in Section 2.1. 

Verification of hypothesis sufficiency means that we need to 
test whether the modelled mechanisms are sufficient to reproduce 
the population dynamics observed in Figure 1.  A healthy individual 
has TH cells measured at 1,000/µl, and the measure falls below 
200/µl when AIDS is developed.  In the simulation model, the initial 
population size of TH cell is set to 100.  If the cell count drops to less 
than 20, the immune system is considered weak and susceptible to 
opportunistic pathogenesis.  Table 1 is a summary of the parameter 
settings for the null model, including the initial entity counts and 
production rates (per time unit).  The parameters are verified 
through experimental simulations such that HIV infection appears 
weak in the face of immune response, and AIDS does not develop in 
the Final stage (see Section 5.1).  As such, if a hypothesis is able to 
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reproduce the population dynamics similar to Figure 1, we can 
conclude that it is the part that differs from the null model that is 
responsible for the alteration in population dynamics. That is, the 
pathogenesis mechanism specific to the hypothesis indeed plays a 
vital role in disease progression.  However, if a hypothesis fails to 
exhibit the AIDS-like dynamics, we suspect the sufficiency of this 
hypothesis in causing AIDS.  While other parameter settings that 
could also give similar null model dynamics; for this preliminary 
study, we focus primarily on demonstrating the feasibility of MA-
based hypothesis verification. 

 
Table 1. Null Model Parameter Setting 

Entity Type TH HIV B AB CTL 
Initial Count 100 50 120 5 30 

Production Rate 5 1* 4 10** 3 
*  reproduction rate only upon successful infection 
**  production rate per activated B cell 
 

4.2 Modelling the Hypotheses 
The four hypotheses are modelled based on the null model 

shown in Figure 3 and initialised according to values in Table 1. 
The differences arise from the addition of new agent rules, or the 
modification of parameters so that the hypothesis-specific 
mechanisms are reflected.  Figure 4 schematically shows the agent 
interaction network of each hypothesis. The encircled portion of the 
diagram denotes the specific differences. 
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Figure 4. Schematics of Four HIV Pathogenesis Hypotheses  

 
Direct Effect on CD4+ Cell (Figure 4(a)): This hypothesis is 

essentially the same as the null model in terms of agent rule 
specification. The difference is that we study this hypothesis under 
different cytopathic strengths.  In particular, we test various settings 
of two parameters: 1) HIV replication rate and 2) initial HIV virion 
count, as these are two parameters that collectively reflect the 
cytopathic strength of HIV in the model.  

Rapid Viral Mutation (Figure 4(b)): The mutation mechanism 
is added by altering the shape from time to time, computationally 
implemented by toggling a series of binary bits.  As such, multiple 
strains of HIV can coexist in the environment.  The antigen 
matching rules were described in Section 4.1 

 Syncytium Formation (Figure 4(c)): The additional 
syncytium formation event takes place when an infected TH cell gets 
close to an uninfected TH cell, or an uninfected TH cell gets close to 
an existing syncytium and is conjoined to it.   

Filling of CD4+ Receptor Sites (Figure 4(d)): The site filling 
of a TH cell is modeled by reducing the activation signals from TH 
cells to B cells. The reduction is implemented on a probabilistic 
basis, that is, only N% of the signals are received compared to the 
null model. 

The abovementioned mechanisms occur within spatial 
proximities.  For example, syncytium forms when an infected TH cell 
gets close to an uninfected TH cell.  ODE models do not consider 
spatial and topological effects; with PDEs however, the dynamics 
can be specified with respect to x, y and z-axes in space in addition 
to the time dimension. This results in an increased number of 
coupled equations, making the model computationally more 
intensive. 

 

5. EXPERIMENT RESULTS 
5.1 Null Model Population Dynamics 

The null model serves as a template for all four HIV infection 
hypotheses.  Figure 5 shows the simulation result of the null model 
based on the agent rule specification in Figure 2 and Figure 3 and 
the parameter settings from Table 1.  HIV is introduced into the 
system at t=0 with a count of 50.  It is quickly eliminated with the 
fast production of antibodies.  Similar patterns are observed for 
subsequent appearance of HIV (t=35, 53, 70, 90).  HIV is controlled 
and AIDS does not develop. 
 

 
Figure 5. Simulation Result of Null HIV Infection Model 

 

5.2 Direct Effect on CD4+ Cell 
The Direct effect on CD4+ Cell hypothesis is investigated by 

increasing the initial HIV count and the replication rate of HIV.  We 
first look at changes in the former while keeping the latter constant.  
Figure 6 shows the result of increasing the initial HIV count to 100, 
twice that of the null model.  The resulting dynamics are not 
significantly different from the null model, that with the increase of 
antibody count, HIV count drops and remains low.  The immune 
system, in particular the TH cell count, is not observed to be 
significantly affected.  

The result shown in Figure 7 uses the same setting as that of 
Figure 6, except that the HIV replication rate is increased to twice 
that in the null model.  Larger scale of ‘humps’ are observed in HIV 
population dynamics but these are quickly suppressed by antibodies 
as can be seen from correlation between the dynamics of antibodies 
and HIV virions.  These initial simulation results suggest that the 
Direct Effect on CD4+ hypothesis may not be sufficient to account 

309



for the three-stage disease progression of HIV.  It is found that when 
the HIV replication rate is set to 8 times that of the null model, the 
HIV count easily rises and turns out to be difficult for immune 
system to control, as shown in Figure 8.  However, Figure 8 does 
not exhibit a ‘proper’ chronic stage, where HIV counts should 
remain low for a longer period of time.  As a result, we suspect the 
sufficiency of the Direct Effect on CD4+ Cell hypothesis in 
explaining HIV’s pathogenesis, based on non-correlating dynamical 
patterns. 

 

 
Figure 6. Direct Effect on CD4+ Cell Hypothesis Simulation 

Result (a): 2x Initial HIV Count 

 
Figure 7. Direct Effect on CD4+ Cell Hypothesis Simulation 

Result (b): 2x Initial HIV Count & 2x HIV Reproduction Rate 

 
Figure 8. Direct Effect on CD4+ Cell Hypothesis Simulation 

Result (c): 2x Initial HIV Count & 8x HIV Reproduction Rate 
 

5.3 Rapid Viral Mutation  
Figure 9 shows the simulation results of the Rapid Viral 

Mutation hypothesis. It closely resembles a long chronic stage 
where the HIV virion count remains low for an extended period, and 
the Final stage where the HIV count increases exponentially while 
the TH cell count drops below 20, indicating the onset of AIDS.  
Since the model only differs from the null model in its introduction 
of pattern recognition during antigen detection and virion mutation, 
it is concluded that these two changes are possible key mechanisms 
for the observed alteration in disease progression.  

Figure 10 is another run where the antibody production rate is 
increased to 30 per B cell, 3 times that of the null model.  Despite 
the high level of antibodies production, HIV still manages to 
overcome it, accompanied with TH cell depletion; therefore the 
dynamics still correlate with observations in Figure 1. 

 

 
Figure 9. Rapid V. Mutation Hypothesis Simulation Result (a) 

 
Figure 10. Rapid V. Mutation Hypothesis Simulation Result 

(b):3x Antibody Production Rate 
 

5.4  Syncytium Formation  
Figure 11 is the simulation results of the Syncytium Formation 

hypothesis.  
 

 
Figure 11. Syncytium Formation Hypothesis Simulation Result 

At t=4, syncytium starts to form.  Even though the population 
of syncytium in the system is not large, the dynamics have changed 
substantially.  The HIV virion count decreases, but the syncytium 
count steadily increases.  After a long chronic period, HIV finally 
starts to increase and TH cells go depletion.  Since the only 
difference between this model and the null model is the addition of a 
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syncytium formation mechanism, the final disease development 
should be attributed to this change, hence we postulate that 
Syncytium Formation plays an important role in HIV’s 
pathogenesis. 

 

5.5 Filling of CD4+ Receptor Sites 
Filling of CD4+ Receptor Sites is implemented by blocking the 

activation signals sent from TH cells to B cells on a probabilistic 
basis.  Figure 12 is the simulation result when only 70% of the 
activation signals are received.  The result does not differ 
significantly in that the HIV virion cannot recover after the initial 
elimination that occurred during the first 45 time units.  The slight 
rises in virion count at t=55 and t=75 are quickly suppressed by a 
rise in antibody count. 

We further investigate the effect of receptor sites filling by 
decreasing the activation signal to 30% of the original null model.  
Figure 13 shows the simulation result.  The simulations under this 
setting consistently show relatively high peaks in virion count, the 
delay in antibody production in response to virion count rises, and 
this occasionally results in HIV outbreak.  This hypothesis reasons 
that the activation signal from the TH cell is an important because it 
activates B cells to produce the necessary antibodies to neutralize 
the virus.  However, the results suggest that activation signal 
blocking only becomes a severe problem (i.e., enough to cause 
AIDS) when the proportion of sent activation signals drastically 
decrease.  If laboratory experiments can show that a large part of the 
cell receptors are filled and are impeded in producing these 
activation signals, we can then conclude that this mechanism has a 
significant role in HIV-1 pathogenesis. 

 

 
Figure 12. Filling CD4+ Receptor Sites Hypothesis Simulation 

Result (a): N% = 70% 

 
Figure 13. Filling CD4+ Receptor Sites Hypothesis Simulation 

Result (a): N% = 30% 

6. THE LOGICAL BASIS FOR OUR WORK 
We have demonstrated how various HIV pathogenesis 

hypotheses could be captured by MA model as localized agent rules 
and how the sufficiency of these hypotheses can be tested through 
MA simulation using CAFISS.  We emphasize the need for an 

initial null model, which should clearly describe the mechanisms of 
an adaptive immune response known to be accurate.  These 
mechanisms are functionally separate from those specific to the 
hypotheses. Currently the null model is only required to satisfy that 
AIDS does not develop, hence any significant alteration in disease 
progression dynamics can be attributed to the addition of 
hypothesis-specific mechanisms.  This line of argument mirrors a 
logical proof based on contradiction.  The null model represents the 
base assumptions that we have verified to be true.  Additional 
assumptions in the form of the hypothesis are then added.  Through 
proper deductive logic, if we are able to show that an inconsistent 
result is derived, then since our deductive process is valid, this must 
imply that the additional assumptions for the hypothesis must be 
false.  If however, should we derive consistent results, then we can 
conclude that the additional assumptions were sufficient to predict 
viral pathogenesis at a certain level of accuracy.  This level of 
accuracy can be improved by a) Increasing the null model 
granularity, b) Considering a combination of infection theories, and 
c) Changing model parameter values based on clinical data. The 
absolute measure of accuracy and relative improvements would have 
to be based on statistical regression against clinical data as is 
commonly done by ODE modelers.  In the next subsection, we 
review some other possible improvements. 
 

6.1 Improvements on Accuracy 
There has been ongoing debate among researchers as to 

whether HIV is the cause of AIDS, or even whether HIV exists [6].  
If we take this into consideration, then the present null model 
requires some redesign.  We expect a good null model to be at a 
higher granularity so that hypothesis-specific elements (entities and 
mechanisms) can be easily integrated.  For example, with antigen 
matching implemented, the addition of mutation mechanisms is 
natural and the interpretation becomes straightforward.  

By comparing the simulation result against the biological 
pattern (Figure 1), particularly the dynamics of HIV and TH cell 
population, we are able to examine each hypothesis that whether 
each of them is sufficient to explain the observed disease 
progression. Of the four, Rapid Viral Mutation and Syncytium 
Formation produce population dynamics that are consistent with 
clinical data.  Hence we speculate they play more vital roles than the 
other two; namely, Direct Effect on CD4+ Cell and Filling of CD4+ 
Receptor Sites. This “null model plus hypothesis” framework of 
hypothesis verification can be further extended to combined 
hypotheses, for example, how they weigh in importance with respect 
to each other, and how they may correlate with each other.  This 
constitutes one of the future extensions as alluded to in 
improvement (b) above. 

Parameter values (improvement (c)) are crucial for both agent 
rules and overall simulation settings.  There are various sources for 
justification of parameter settings, such as direct clinical data, 
simulated molecular biological data, and ODE-model-generated 
data, each requires careful investigations on how to utilize them 
properly in MA model parameter setting.  

7. CONCLUSIONS 
In this paper, we present a CAFISS-based Multi-Agent model 

to verify the sufficiency of four well-known HIV pathogenesis 
hypotheses that are reported to cause AIDS.  We explicate the 
common processes of traditional ODE models and their inherent 
limitations that motivate the use of MA models.  Our MA model 
design methodology and the preliminary simulation results are based 

311



on a “null model plus hypothesis” framework of sufficiency 
verification.  Such a methodology is shown to be based on the logic 
of contradiction proofs; directing us also towards how ‘model 
accuracy’ can have definite semantics.  We show that among the 
four hypotheses, Rapid Viral Mutation and Syncytium Formation 
produce population dynamics that correlate with clinical data on 
HIV infection stages.  The Direct Effect on CD4+ Cell hypothesis 
fails to exhibit these correlating patterns even under 8 times the 
infection levels present in the null model, while the result of Filling 
of CD4+ Receptor Sites hypothesis shows that the activation signals 
of TH cells must be impeded up to 70% before similar dynamics can 
appear occasionally.  We show that there is a logical and empirical 
basis for sufficiency verification of biological phenomena, and 
propose that more formalized hypothesis verification frameworks 
and treatments for improving accuracy be constructed so that 
computer-assisted hypothesis verification tools can become a reality 
in the near future. 

 

8. REFERENCES 
[1] Bar-Yam, Y. Dynamics of Complex Systems. Westview Press, 

Reading, 1997. 
[2] Duesberg, P. HIV is not the cause of AIDS. Science, 241, (July 

1988), 514-517.  
[3] Essunger, P.  and Perelson, A. S.  Modeling HIV infection of 

CD4+ T-cell subpopulations. J. theor. Biol., 179, (1994), 367-
391. 

[4] Grilo, A., Caetano, A., and Rosa, A. Immune system 
simulation through a complex adaptive system model. In 
Proceedings of the 3rd Workshop on Genetic Algorithms and 
Artificial Life (GAAL'99), 1999. 

[5] Heinkelein, M., Sopper, S., Jassoy, C. Contact of human 
immunodeficiency virus type 1-infected and uninfected CD4+ 
T lymphocytes is highly cytolytic for both cells. Journal of 
Virology, 69, 11 (Nov. 1995), 6925-6931. 

[6] HIV & AIDS – VirusMyth AIDS HomePage, 
http://www.virusmyth.net/aids/index.htm 

[7] Holland, J. Adaptation in Natural and Artificial Systems. MIT 
Press, Cambridge, MA, 1992. 

[8] Janeway, C. A., Travers, P., Walport, M. and Shlomchik, M. J. 
Immunobiology: the immune system in health and disease, 5th 
ed., Garland Publishing, Reading, 2001. 

[9] Tay, J. C. and Jhavar A., CAFISS: a complex adaptive 
framework for immune system simulation. In Proceedings of 
the ACM Symposium for Applied Computing - Bioinformatics 
2005 (SAC2005) Santa Fe, New Mexico, March 14-17, 2005. 

[10] Levy, J. A. Pathogenesis of human immunodeficiency virus 
infection. Microbiol. Rev., 57, 1 (Mar. 1993), 183-289.  

[11] Liversidge, A. PNAS publication of AIDS article spurs debate 
over peer review. The Scientist, (April 1989).  
http://www.virusmyth.net/aids/data/alpeer.htm 

[12] Louzoun, Y., Solomon, S., Atlan, H., and Cohen, I. R.  
Modeling complexity in biology.  Physica A, 297, (2001), 242-
252. 

[13] Mitchell, M. An Introduction to Genetic Algorithms. Bradford 
Books, Reading, 1998. 

[14] Montagnier, L. A history of HIV discovery. Science, 298, 5599 
(Nov. 2002), 1727-1728. 

[15] Nowak, M. A. and McMichael, A. J. How HIV defeats the 
immune system. Scientific American, 273, (Aug. 1995), 58-65. 

[16] Nowak, M. A., Anderson, R. M., McLean, A. R., Wolfs, T. F. 
W., Goudsmit, J., and May, R. M. Antigenic diversity 
thresholds and the development of AIDS.  Science, 254, 5034 
(Nov. 1991), 963-969. 

[17] Nowak, M. A., May, R. M., and Anderson, R. M. The 
evolutionary dynamics of HIV-1 quasispecies and the 
development of immunodeficiency disease.  AIDS,  4, (1990), 
1095-1103. 

[18] Parunak, H. V. D., Savit, R., and  Riolo, R. L. Agent-based 
modeling vs. equation-based modeling: a case study and users' 
guide. In Proceedings of Multi-agent systems and Agent-based 
Simulation (MABS'98), 1998. 

[19] Perelson, A. S. and Nelson, P. W. Mathematical analysis of 
HIV-1 dynamics in vivo. SIAM Review, 41, (1999), 3-44. 

[20] Perelson, A. S. Modelling viral and immune system dynamics. 
Nature Reviews Immunology, 2, 1 (Jan. 2002), 28-36. 

[21] Rowland-Jones, S. L. AIDS pathogenesis: what have two 
decades of HIV research taught us? Nature Reviews 
Immunology, 3, 4 (Apr. 2003), 343-348. 

[22] Rubbert A. and Ostrowski, M. Pathogenesis of HIV-1 
Infection, In HIV Medicine 2003, edited by Hoffmann. C. and 
Kamps, B. S. Flying Publisher, Reading, 2003. 
http://www.hivmedicine.com/textbook/pathogen.htm 

[23] Selliah, N. and  Finkel, T. H. Biochemical mechanisms of HIV 
induced T cell apoptosis. Cell Death and Differentiation, 8, 2 
(Feb 2001), 127-136. 

[24] Stafford, M. A., Corey, L., Cao, Y., Daar, E. S., Ho, D. D., and 
Perelson, A. S. Modeling plasma virus concentration during 
primary HIV infection. J. theor. Biol., 203, (2000), 285-301. 

[25] Stine, Gerald J. AIDS Update 2003. Benjamin/Cummings, 
Reading, 2003. 

[26] Guo Z. and Tay, J. C. Hypothesis Verification for HIV 
Infection through Immune Dynamics Modeling: A Model 
Developer's Review. Technical Report, Nanyang Technological 
University, 2004.  

[27] Zorzenon dos Santos, B. M. Immune responses: getting close 
to experimental results with cellular automata models. Annual 
Reviews of Computational Physics VI, (1999), 159-202.  

 

312


